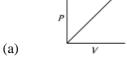


Max Marks: 200 Date: 08.08.2022

JB 2 MR BATCH CHEMISTRY: PART TEST Topic: States of Matter + S-Block


				•				
1.	Equal	amounts of two gas	es of mo	olecular weight 4 and	40 are r	nixed. The pressure of	of the mi	xture is 1.1 atm. The
	partial	pressure of the light	t gas in t	this mixture is				
	(a)	0.55 atm	(b)	0.11 atm	(c)	1 atm	(d)	0.12 atm
2.	Kinetio	e energy of molecule	es is hig	hest in				
	(a)	Gases	(b)	Solids	(c)	Liquids	(d)	Solutions
3.	A volu	me of 1 m ³ is equal	to					
	(a)	1000 cm^3	(b)	100 cm^3	(c)	$10 dm^3$	(d)	$10^6 \mathrm{cm}^3$
4.	Rate of	f diffusion of a gas i	S					
	(a)	Directly proportio	nal to its	density				
	(b)	Directly proportio	nal to its	s molecular mass				
	(c)	Directly proportio	nal to th	e square root of its me	olecular	mass		
	(d)	Inversely proportion	onal to t	he square root of its n	nolecula	r mass		
5.	Which	of the following ga	s will ha	ave highest rate of diff	fusion			
	(a)	NH_3	(b)	N_2	(c)	CO_2	(d)	\mathbf{O}_2
6.	Pressu	re of a gas in a vesse	el can be	e measured by				
	(a)	Barometer	(b)	Manometer	(c)	Stalgometer	(d)	All the above

- 7. Which one of the following statements is wrong for gases
 - (a) Gases do not have a definite shape and volume
 - (b) Volume of the gas is equal to the volume of the container confining the gas
 - (c) Confined gas exerts uniform pressure on the walls of its container in all directions.
 - (d) Mass of the gas cannot be determined by weighing a container in which it is enclosed.
- 8. N_2 is found in a litre flask under 100kPa pressure and O_2 is found in a another 3 litre flask under 320 kPa pressure. If the two flasks are connected, the resultant pressures is
 - (a) 310 kPa
- (b) 210 kPa
- (c) 420 kPa
- (d) 365 kPa

- (e) 265 kPa
- 9. At constant temperature, in a given mass of an ideal gas
 - (a) The ratio of pressure and volume always remains constant
 - (b) Volume always remains constant
 - (c) Pressure always remains constant
 - (d) The product of pressure and volume always remains constant
- 10. If 20 cm³ gas at 1atm. Is expanded to 50 cm³ at constant T, then what is the final pressure
 - (a) $20 \times \frac{1}{50}$
- (b) $50 \times \frac{1}{20}$
- (c) $1 \times \frac{1}{20} \times 50$
- (d) None of these

11. Which of the following graphs represent Boyle's law

(b)

(a)

(d)

- 12. At constant pressure, the volume of fixed mass of an ideal gas is directly proportional to
 - (a) Absolute temperature

(b) Degree centigrade

(c) Degree Fahrenheit

(d) None

13.	Use of hot air balloons in sports and meteorological observations is an application of												
	(a)	Boyle's law	(b)	Newtonic law	(c)	Kelvin's law	(d)	Charle's law					
14.	NaH	NaH is an example of:											
	(a)	Electron-rich hy	dride		(b)	Molecular hydrid	le						
	(c)	Saline hydride			(d)	Metallic hydride							
15.	The s	strength of 11.2 vol	ume solu	tion of H ₂ O ₂ is: [G	iven that	molar mass of H = 1	g mol ⁻¹ a	and $O = 16 \text{ g mol}^{-1}$					
	(a)	13.6%	(b)	3.4%	(c)	34%	(d)	1.7%					
16.	The synonym for water gas when used in the production of methanol is:												
	(a)	natural gas	(b)	laughing gas	(c)	syn gas	(d)	fuel gas					
17.	The temporary hardness of a water sample is due to compound X. Boiling this sample converts X to compound Y.												
	X and	d Y, respectively, a	re										
	(a)	Ca(HCO ₃) and CaO				Mg(HCO ₃) ₂ and MgCO ₃							
	(c)	Mg(HCO ₃) ₂ and	l Mg(OH	()2	(d)	Ca(HCO ₃) ₂ and C	Ca(OH) ₂						
18.	Hydro	ogen peroxide in it	s reaction	n with KIO4 and NH2	2OH respe	ectively, is acting as	a						
	(a)	reducing agent,	oxidizing	g agent	(b)	reducing agent, r	educing a	gent					
	(c)	oxidizing agent,	, oxidizin	g agent	(d)	oxidizing agent,	reducing a	agent					
19.	Hydrogen molecule differs from chlorine molecule in which of the following respect?												
	(a)	Hydrogen mole	cule is no	on-polar but chlorine	molecule	e is polar							
	(b)	Hydrogen molecule is polar while chlorine molecule is non-polar											
15. 16. 17.	(c)	Hydrogen molecule can form intermolecular hydrogen bonds but chlorine molecule does not											
	(d)	Hydrogen molecule cannot participate in coordination bond formation but chlorine molecule can											

20. Which of the following explanation is best for not placing hydrogen with alkali metals or halogen? The ionization energy of hydrogen is high for group of alkali metals or halogen. (a) (b) Hydrogen can form compounds. (c) Hydrogen is a much lighter element than the alkali metals or halogens. (d) Hydrogen atom does not contain any neutron. 21. When electric current is passed through an ionic hydride in the molten state Hydrogen is liberated at the anode (a) (b) Hydrogen is liberated at the cathode (d) Hydride ion migrates towards cathode (c) No reaction takes place Which statement is not correct for ortho and para hydrogen? 22. They have different boiling points (a) Ortho-forms is more stable than para-form at low temperature. (b) (c) They differ in their nuclear spin (d) The ratio of ortho to para hydrogen changes with change in temperature 23. HCl is added to the following oxides which one would give H₂O₂? MnO_2 (b) PbO_2 BaO_2 None of these (c) (d) 24. The reaction of $H_2S + H_2O_2 \rightarrow S + 2H_2O$ manifests (a) Acidic nature of H₂O₂ (b) Alkaline nature of H₂O₂ (c) Oxidising nature of H₂O₂ (d) Reducing action of H₂O₂ 25. Which of the following is not true? Hardness of water depends on its behaviour towards soap. (a) (b) The temporary hardness is due to the presence of Ca and Mg bicarbonates. Permanent hardness is due to the presence of soluble Ca and Mg sulphates, chlorides and nitrates. (c)

Space for Rough Work

Permanent hardness can be removed by boiling the water.

(d)

MATHEMATICS: PART TEST

Topics: Complex Number, Logarithm and It's Applications

26. If
$$z^2 = -24 - 18i$$
, then $z =$

(a)
$$\pm \sqrt{3} (i + 3i)$$

$$\pm \sqrt{3} (i + 3i)$$
 (b) $\pm \sqrt{3} (3 - i)$

(c)
$$\pm \sqrt{3} (1-3i)$$

$$\pm \sqrt{3} (1-3i)$$
 (d) $\pm \sqrt{3} (3+i)$

27. The roots of the equation
$$x^4 - 1 = 0$$
 are

(a)
$$1, 1, i, -1$$

(b)
$$1, -1, i, -i$$

(c)
$$1, -1, \omega, \omega^2$$

(d) None of these

28. If
$$x = 1 + 2i$$
, the value of $x^3 + 2x^2 - 3x + 5 =$

(b)
$$-15$$

29. The modulus and amplitude of
$$\frac{1+2i}{1-(1-i)^2}$$
 are

(a)
$$\sqrt{2}$$
 and $\frac{\pi}{6}$ (b) 1 and 0

(c) 1 and
$$\frac{\pi}{3}$$

(c) 1 and
$$\frac{\pi}{3}$$
 (d) 1 and $\frac{\pi}{4}$

$$30. \qquad \frac{1+7i}{(2-i)^2} =$$

(a)
$$\sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4} \right)$$

(b)
$$\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

(c)
$$\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$$

(d)
$$\left(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}\right)$$

$$31. \qquad \left(\frac{1+i}{\sqrt{2}}\right)^8 + \left(\frac{1-i}{\sqrt{2}}\right)^8 =$$

- (a) 1
- (b) 2
- (c) 4
- (d) 8

32. The value of
$$\frac{1}{1+\omega} + \frac{1}{1+\omega^2} =$$

- (a) 0
- (b) 1
- (c) -1
- (d) 2

33. If
$$\omega$$
 is a complex cube root of unity, then $(1 + \omega - 2\omega^2)^4 + (4 + \omega + 4\omega^2)^4 =$

- (a) 0
- (b) -81
- (c) 8
- (d) -1

34. If
$$\alpha$$
 and β are imaginary cube roots of unity, then the value of $\alpha^4 + \beta^{28} + \frac{1}{\alpha\beta}$ is

- (a) 1
- (b) -1
- (c) 0

(d) 2

35. If
$$\omega$$
 is an imaginary cube root of unity, then the value of $\sin\left[(\omega^{10} + \omega^{23})\pi - \frac{\pi}{4}\right]$ is

- (a) $-\sqrt{3}/2$
- (b) $-1/\sqrt{2}$
- (c) $1/\sqrt{2}$
- (d) $\sqrt{3} / 2$

36. The value of
$$\frac{1+2\log_3 2}{(1+\log_3 2)^2} + (\log_6 2)^2$$
 is

- (a) 2
- (b) 3

(c) 4

(d)

37. If
$$\log_4 5 = a$$
 and $\log_5 6 = b$, then $\log_3 2$ is equal to

- $\frac{1}{2a+1}$
- $\frac{1}{2b+1}$
- (c) 2ab + 1
- $(d) \qquad \frac{1}{2ab-1}$

1

38. If
$$\log_{10} 2 = a$$
, $\log_{10} 3 = b$ then $\log_{0.72}(9.6)$ in terms of a and b is equal to

- (a) $\frac{2a + 3b 1}{5a + b 2}$
- (b) $\frac{5a + b 1}{3a + 2b 2}$
- (c) $\frac{3a+b-2}{2a+3b-1}$
- (d) $\frac{2a + 5b 2}{3a + b 1}$

39.	The value of	$\log_2 24$	$\log_2 192$	ic
3).	The value of		$\log_{12} 2$	10

- (a) 3
- (b) 0
- (c) 2
- (d) 1

- 40. If a^4 . $b^5 = 1$, then the value of $\log_a (a^5b^4)$ equals
 - (a) 9/5
- (b)

- (c) 5
- (d) 8/5

- 41. The value of $3^{\log_4 5} 5^{\log_4 3}$ is
 - (a) 0
- (b) 1
- (c) 2
- (d) None of these
- 42. If $2^{x+y} = 6^y$ and $3^{x-1} = 2^{y+1}$, then the value of $(\log 3 \log 2)/(x y)$ is
 - (a)
- (b) $\log_2 3 \log_3 2$
- (c) $\log (3/2)$
- (d) None of these

- 43. The value of x satisfying $\sqrt{3}^{-4+2\log\sqrt{5} x} = 1/9$ is
 - (a) 2
- (b)

- (c) 4
- (d) None of these

- 44. If $\log_2 x + \log_x 2 = \frac{10}{3} = \log_2 y + \log_y 2$ and $x \neq y$, then x + y = 1
 - (a) 2
- (b) 65/8
- (c) 37/6
- (d) None of these

- 45. If $log_{10} \left[\frac{1}{2^x + x 1} \right] = x \left[log_{10} 5 1 \right]$, then x =
 - (a) 4
- (b)

- (c) 2
- (d) 1

- 46. If $\log_3\{5 + 4\log_3(x 1)\} = 2$, then x is equal to
 - (a) 2
- (b)

- (c) 8
- (d) $\log_2 16$

- 47. If $2x^{\log_4 3} + 3^{\log_4 x} = 27$, then x is equal to
 - (a) 2
- (b)

- (c) 8
- (d) 16

- 48. The number of roots of the equation $\log_{3\sqrt{3}} x + \log_{3x} \sqrt{x} = 0$ is
 - (a) 1
- (b)

- (c) 3
- (d) 0

49. The set of all x satisfying the equation

$$x^{\log_3 x^2 + (\log_3 x)^2 - 10} = 1 / x^2$$
 is

- (a) $\{1, 9\}$
- (b) {1, 9, 1/81}
- (c) $\{1, 4, 1/81\}$
- (d) $\{9, 1/8\}$

- 50. If $xy^2 = 4$ and $log_3 (log_2 x) + log_{1/3} (log_{1/2} y) = 1$, then x equals
 - (a) 4
- (b)

- (c) 16
- (d) 64

Max Marks: 200 Date: 08.08.2022

JB 2 MR BATCH CHEMISTRY: PART TEST ANSWER KEY

Topic: States of Matter + S-Block

1.	(c)	2.	(a)	3.	(d)	4.	(d)	5.	(a)
6.	(b)	7.	(d)	8.	(e)	9.	(d)	10.	(a)
11.	(b, c)	12.	(a)	13.	(d)	14.	(c)	15.	(b)
16.	(c)	17.	(b)	18.	(a)	19.	(d)	20.	(c)
21.	(a)	22.	(b)	23.	(c)	24.	(c)	25.	(d)

MATHEMATICS : PART TEST ANSWER KEY Topics: Complex Number, Logarithm and It's Applications

26.	(c)	27.	(b)	28.	(b)	29.	(b)	30.	(a)
31.	(b)	32.	(b)	33.	(b)	34.	(c)	35.	(c)
36.	(d)	37.	(d)	38.	(b)	39.	(a)	40.	(a)
41.	(a)	42.	(c)	43.	(d)	44.	(d)	45.	(d)
46.	(b)	47.	(d)	48.	(b)	49.	(b)	50.	(d)